homogene Funktion


homogene Funktion
homogene Funktion,
 
eine Funktion mehrerer Variablen, für die gilt:
 
für alle reellen t und alle xi (i = 1,. .., n) des Definitionsbereichs; n ist der Grad der homogenen Funktion; z. B. ist f (x1, x2) = x12 + x1 · x2x22 eine homogene Funktion vom Grad 2. Für homogene Funktionen gilt der eulersche Satz: Ist eine differenzierbare Funktion homogen vom Grade n in x1, x2,. .., xn, so ist

Universal-Lexikon. 2012.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Homogene Funktion — Eine mathematische Funktion heißt homogen vom Grad n, wenn bei proportionaler Änderung aller Variablen um den Proportionalitätsfaktor α sich der Funktionswert um den Faktor αn ändert. Formal: Eine Funktion auf dem k dimensionalen reellen… …   Deutsch Wikipedia

  • Homogene Abbildung — Eine mathematische Funktion heißt homogen vom Grad n, wenn bei proportionaler Änderung aller Variablen um den Proportionalitätsfaktor α sich der Funktionswert um den Faktor αn ändert. Formal: Eine Funktion auf dem k dimensionalen reellen… …   Deutsch Wikipedia

  • homogene Differenzialgleichung — homogene Differenzialgleichung,   eine Differenzialgleichung der Form y = f ; auch Bezeichnung für jede lineare gewöhnliche Differenzialgleichung, in der kein von der gesuchten Funktion y oder seinen Ableitungen freies Glied …   Universal-Lexikon

  • Funktion (Mathematik) — In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, x Wert) genau ein Element der anderen Menge (Funktionswert, abhängige Variable, y… …   Deutsch Wikipedia

  • Algebraische Funktion — In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Eingangsgröße, Funktionsargument, unabhängige Variable, x Wert) ein Element der anderen Menge (Ausgangsgröße, Funktionswert …   Deutsch Wikipedia

  • Mathematische Funktion — In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Eingangsgröße, Funktionsargument, unabhängige Variable, x Wert) ein Element der anderen Menge (Ausgangsgröße, Funktionswert …   Deutsch Wikipedia

  • Transzendente Funktion — In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Eingangsgröße, Funktionsargument, unabhängige Variable, x Wert) ein Element der anderen Menge (Ausgangsgröße, Funktionswert …   Deutsch Wikipedia

  • Delta-Funktion — Die Delta Distribution (auch δ Funktion; Dirac Funktion, Impuls, Puls, Stoß (nach Paul Dirac); Stoßfunktion; sowie Einheitsimpulsfunktion genannt) wird in der Naturwissenschaft durch ein kleines Delta δ dargestellt und symbolisiert eine spezielle …   Deutsch Wikipedia

  • Dirac-Funktion — Die Delta Distribution (auch δ Funktion; Dirac Funktion, Impuls, Puls, Stoß (nach Paul Dirac); Stoßfunktion; sowie Einheitsimpulsfunktion genannt) wird in der Naturwissenschaft durch ein kleines Delta δ dargestellt und symbolisiert eine spezielle …   Deutsch Wikipedia

  • Leontief-Funktion — Die Leontief Produktionsfunktion ist ein Typ (Typ B) der mikroökonomischen Produktionsfunktion. Sie wird als linear limitational bezeichnet, da die Produktionsfaktoren in einem festen Verhältnis zueinander und in einem festen Verhältnis zum… …   Deutsch Wikipedia